Nitrogen (N) availability influences the productivity and distribution of plants in tropical montane forests. Strategies to acquire soil N, such as direct uptake of organic compounds or associations with root symbionts to enhance N acquisition in exchange for carbon (C), may facilitate plant species coexistence and ecosystem N retention. Alternatively, rapid microbial turnover of soil N forms in tropical soils might promote flexible plant N-uptake strategies and mediate species coexistence. We tested whether sympatric plant species with different root symbiont associations, and therefore potentially different nutrient acquisition strategies, partition chemical forms of N or show plasticity in N uptake in a tropical pre-montane forest in Panama. We traced the movement of three 15 N forms into soil pools, microbes, and seedlings of eleven species differing in root traits. Seedlings were grown in a split-plot field transplant experiment, with plots receiving equimolar mixtures of ammonium, nitrate, and glycine, with one form isotopically labeled in each block. After 48 h, more 15 N was recovered in microbes than in plants, while all pools (extractable organic and inorganic N, microbial biomass, and leaves) contained greater amounts of 15 N from nitrate than from ammonium or glycine. Furthermore, 13 C from dual-labeled glycine was not recovered in the leaves of any seedling, suggesting the studied species do not directly take up organic N or transform organic N prior to translocation to leaves. Nitrogen uptake differed by root symbiont group only for nitrate, with greater 15 N recovery in plants with arbuscular mycorrhizal (AM) associations or proteoid roots compared to orchids. Some root trait groups differed in 15 N recovery among N forms, with greater nitrate uptake than ammonium or glycine by AM-associated and N2 -fixing plants. However, only five of eleven species showed differences in uptake among N forms. These results indicate flexibility in uptake of N forms in tropical plants across root trait groups, with only a few species displaying weak preferences for a specific N form.
Keywords: ammonium; co-existence; glycine; nitrate; nitrogen partitioning; nutrient acquisition strategy; organic nitrogen; plant-soil interactions; plasticity; root traits; stable isotopes; tropical forest.
© 2017 by the Ecological Society of America.