The reaction of human beta-endorphin and biotinyl N-hydroxysuccinimide with or without spacer arm, afforded a series of products that were separated by high performance liquid chromatography (HPLC). Liquid secondary ion mass spectrometry of the biotinylated products and their tryptic digests produced abundant protonated molecular ions (MH+), which specified the number and location of biotinylation. Between 1 and 4 biotinyl residues were incorporated per human beta-endorphin molecule, at Lys-9, -19, -24, -28, and -29, but not at the amino-terminal Tyr-1. Three HPLC fractions were isolated for receptor binding studies with monobiotinylation of Lys-9 (B1 beta and B1X beta; X = C6 spacer arm), Lys-19 (B1 gamma), and a mixture of Lys-24, Lys-28, and Lys-29 derivatives (B1 alpha, BX1 alpha). All derivatives displayed tight binding to avidin, and no dissociation from avidin was detectable over several hours at 0 degrees C for the derivatives (BX1 alpha) tested. IC50 values for binding to mu and delta opioid receptor sites were 3-8 times higher for monobiotinylated derivatives than for the parent human beta-endorphin (IC50,mu = 1.5 nM, IC50,delta = 1.3 nM). Association with avidin decreased opioid receptor affinities for the C6 spacer derivative biotinylated at position Lys-9, which is close to the (1-5) enkephalin receptor region. In contrast, avidin did not affect or even increased apparent affinities to mu and delta sites for derivatives biotinylated at the alpha-helical part of the molecule (Lys-19, -24, -28, and -29). Thus, when bound to avidin, the biotinylated human beta-endorphin derivatives with spacer arm (BX1 alpha), substituted near the carboxyl terminal (Lys-24, -28, and -29), displayed mu binding affinities equal to and delta binding affinities only four times lower than underivatized human beta-endorphin. Biotinylated human beta-endorphins also bound to low affinity nonopioid binding sites on NG-108-15 cells; however, affinities to these sites were considerably reduced when derivatives were bound to avidin. The ability of biotinylated human beta-endorphin to cross-link the mu and delta opioid receptors to avidin allows application of the biotin-avidin system as a molecular probe of the opioid receptor.