Integrating Process Mining and Cognitive Analysis to Study EHR Workflow

AMIA Annu Symp Proc. 2017 Feb 10:2016:580-589. eCollection 2016.

Abstract

There are numerous methods to study workflow. However, few produce the kinds of in-depth analyses needed to understand EHR-mediated workflow. Here we investigated variations in clinicians' EHR workflow by integrating quantitative analysis of patterns of users' EHR-interactions with in-depth qualitative analysis of user performance. We characterized 6 clinicians' patterns of information-gathering using a sequential process-mining approach. The analysis revealed 519 different screen transition patterns performed across 1569 patient cases. No one pattern was followed for more than 10% of patient cases, the 15 most frequent patterns accounted for over half ofpatient cases (53%), and 27% of cases exhibited unique patterns. By triangulating quantitative and qualitative analyses, we found that participants' EHR-interactive behavior was associated with their routine processes, patient case complexity, and EHR default settings. The proposed approach has significant potential to inform resource allocation for observation and training. In-depth observations helped us to explain variation across users.

MeSH terms

  • Anthropology, Cultural
  • Cognition
  • Electronic Health Records* / organization & administration
  • Humans
  • Information Seeking Behavior*
  • Information Storage and Retrieval
  • Internship and Residency
  • Nurse Practitioners
  • Personnel, Hospital*
  • Physician Assistants
  • User-Computer Interface
  • Workflow*