Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu2+ and [CuII(OH)]+ ions. A redox reaction mechanism has also been established, where Cu ions cycle between CuI and CuII oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (CuII → CuI) is reasonably well-understood, that for the oxidation half-cycle (CuI → CuII) remains an unsettled debate. Herein we report detailed reaction kinetics on low-temperature standard NH3-SCR, supplemented by DFT calculations, as strong evidence that the low-temperature oxidation half-cycle occurs with the participation of two isolated CuI ions via formation of a transient [CuI(NH3)2]+-O2-[CuI(NH3)2]+ intermediate. The feasibility of this reaction mechanism is confirmed from DFT calculations, and the simulated energy barrier and rate constants are consistent with experimental findings. Significantly, the low-temperature standard SCR mechanism proposed here provides full consistency with low-temperature SCR kinetics.