Pixel response-based EPID dosimetry for patient specific QA

J Appl Clin Med Phys. 2017 Jan;18(1):9-17. doi: 10.1002/acm2.12007. Epub 2016 Dec 15.

Abstract

Increasing use of high dose rate, flattening filter free (FFF), and/or small-sized field beams presents a significant challenge to the medical physics community. In this work, we develop a strategy of using a high spatial resolution and high frame rate amorphous silicon flat panel electronic portal imaging device (EPID) for dosimetric measurements of these challenging cases, as well as for conventional external beam therapy. To convert a series of raw EPID-measured radiation field images into water-based dose distribution, a pixel-to-pixel dose-response function of the EPID specific to the linac is essential. The response function was obtained by using a Monte Carlo simulation of the photon transport in the EPID with a comprehensive calibration. After the raw image was converted into the primary incident photon fluence, the fluence was further convolved into a water-based dose distribution of the dynamic field by using a pregenerated pencil-beam kernel. The EPID-based dosimetric measurement technique was validated using beams with and without flattening filter of all energies available in Varian TrueBeam STx™. Both regularly and irregularly shaped fields measured using a PTW 729 ion chamber array in plastic water phantom. The technique was also applied to measure the distribution for a total of 23 treatment plans of different energies to evaluate the accuracy of the proposed approach. The EPID measurements of square fields of 4 × 4 cm2 to 20 × 20 cm2, circular fields of 2-15 cm diameters, rectangular fields of various sizes, and irregular MLC fields were in accordance with measurements using a Farmer chamber and/or ion chamber array. The 2D absolute dose maps generated from EPID raw images agreed with ion chamber measurements to within 1.5% for all fields. For the 23 patient cases examined in this work, the average γ-index passing rate were found to be 99.2 ± 0.6%, 97.4 ± 2.4%, and 72.6 ± 8.4%, respectively, for criterions of 3 mm/3%, 2 mm/2%, and 1 mm/1%. The high spatial resolution and high frame rate EPID provides an accurate and efficient dosimetric tool for QA of modern radiation therapy. Accurate absolute 2D dose maps can be generated from the system for an independent dosimetric verification of treatment delivery.

Keywords: EPID; Monte Carlo; dosimetry; patient‐specific QA.

MeSH terms

  • Algorithms
  • Calibration
  • Electrons*
  • Equipment Design
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Particle Accelerators
  • Phantoms, Imaging*
  • Quality Assurance, Health Care / standards*
  • Radiometry / instrumentation*
  • Radiometry / methods
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Image-Guided / instrumentation*
  • Radiotherapy, Image-Guided / methods
  • Radiotherapy, Intensity-Modulated / instrumentation*
  • Radiotherapy, Intensity-Modulated / methods