Viruses utilize distinct binding interactions with a variety of host factors to gain entry into host cells. A chemical strategy is described to precisely perturb a specific molecular interaction between adeno-associated virus and its host cell, which can be rapidly reversed by light. This strategy enables pausing the virus entry process at a specific stage and then restart it rapidly with a non-invasive stimulus. The ability to synchronize the invading virus population at a discrete step in its entry pathway will be highly valuable for enabling facile experimental characterization of the molecular processes underlying this process. Additionally, adeno-associated virus has demonstrated outstanding potential for human gene therapy. This work further provides a potential approach to create therapeutic vectors that can be photoactivated in vivo with high spatial and temporal control.
Keywords: adeno-associated viruses; genetic code expansion; optical regulation; viral entry; virus-host interactions.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.