Myeloproliferative neoplasms (MPNs) are a group of related clonal hematologic disorders characterized by excess accumulation of one or more myeloid cell lineages and a tendency to transform to acute myeloid leukemia. Deregulated JAK2 signaling has emerged as the central phenotypic driver of BCR -ABL1-negative MPNs and a unifying therapeutic target. In addition, MPNs show unexpected layers of genetic complexity, with multiple abnormalities associated with disease progression, interactions between inherited factors and phenotype driver mutations, and effects related to the order in which mutations are acquired. Although morphology and clinical laboratory analysis continue to play an important role in defining these conditions, genomic analysis is providing a platform for better disease definition, more accurate diagnosis, direction of therapy, and refined prognostication. There is an emerging consensus with regard to many prognostic factors, but there is a clear need to synthesize genomic findings into robust, clinically actionable and widely accepted scoring systems as well as the need to standardize the laboratory methodologies that are used.