Application of established pathophysiologic processes brings greater clarity to diagnosis and treatment of hyponatremia

World J Nephrol. 2017 Mar 6;6(2):59-71. doi: 10.5527/wjn.v6.i2.59.

Abstract

Hyponatremia, serum sodium < 135 mEq/L, is the most common electrolyte abnormality and is in a state of flux. Hyponatremic patients are symptomatic and should be treated but our inability to consistently determine the causes of hyponatremia has hampered the delivery of appropriate therapy. This is especially applicable to differentiating syndrome of inappropriate antidiuresis (SIAD) from cerebral salt wasting (CSW) or more appropriately, renal salt wasting (RSW), because of divergent therapeutic goals, to water-restrict in SIAD and administer salt and water in RSW. Differentiating SIAD from RSW is extremely difficult because of identical clinical parameters that define both syndromes and the mindset that CSW occurs rarely. It is thus insufficient to make the diagnosis of SIAD simply because it meets the defined characteristics. We review the pathophysiology of SIAD and RSW, the evolution of an algorithm that is based on determinations of fractional excretion of urate and distinctive responses to saline infusions to differentiate SIAD from RSW. This algorithm also simplifies the diagnosis of hyponatremic patients due to Addison's disease, reset osmostat and prerenal states. It is a common perception that we cannot accurately assess the volume status of a patient by clinical criteria. Our algorithm eliminates the need to determine the volume status with the realization that too many factors affect plasma renin, aldosterone, atrial/brain natriuretic peptide or urine sodium concentration to be useful. Reports and increasing recognition of RSW occurring in patients without evidence of cerebral disease should thus elicit the need to consider RSW in a broader group of patients and to question any diagnosis of SIAD. Based on the accumulation of supporting data, we make the clinically important proposal to change CSW to RSW, to eliminate reset osmostat as type C SIAD and stress the need for a new definition of SIAD.

Keywords: Cerebral-renal salt wasting; Fractional excretion of urate; Hyponatremia.

Publication types

  • Editorial