Synthetic wastewater (SW) at various carbon concentrations (5-60g/l) were evaluated for polyhydroxyalkanoates (PHA) production using the bacteria Pseudomonas pseudoflava. Bacteria showed highest PHA production with 20g/l (57±5%), and highest carbon removal at 5g/l (74±6%) concentrations respectively. Structure, molecular weight, and thermal properties of the produced PHA were evaluated using various analytical techniques. Bacteria produced homo-polymer [poly-3-hydroxybutyrate (P3HB)] when only acetate was used as carbon source; and it produced co-polymer [poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV)] by addition of co-substrate propionate. PHA synthase, the enzyme which produce PHA was extracted from two bacterial strains i.e., P. pseudoflava and P. palleronii and its molecular weight was analysed using SDS-PAGE. Protein concentration, and PHA synthase enzyme activity of P. pseudoflava and P. palleronii was carried out using spectrophotometer. Results denoted that P. pseudoflava can be used for degradation of organic carbon persistent in wastewaters and their subsequent conversion into PHA.
Keywords: P(3HB-co-3HV); PHA synthase; Pseudomonas pseudoflava; SDS-PAGE; Total organic carbon.
Copyright © 2017 Elsevier Ltd. All rights reserved.