Genome-independent hypoxic repression of estrogen receptor alpha in breast cancer cells

BMC Cancer. 2017 Mar 20;17(1):203. doi: 10.1186/s12885-017-3140-9.

Abstract

Background: About 75-80% of breast tumors express the estrogen receptor alpha (ER-α) and are treated with endocrine-target therapeutics, making this the premier therapeutic modality in the breast cancer clinic. However, acquired resistance is common and about 20% of resistant tumors loose ER-α expression via unknown mechanisms. Inhibition of ER-α loss could improve endocrine therapeutic efficacy, benefiting a significant number of patients. Here we test whether tumor hypoxia might commonly produce ER-α loss.

Methods: Using standard molecular and cellular biological assays and a work station/incubator with controllable oxygen levels, we analyze the effects of hypoxia on ER-α protein, mRNA, and transcriptional activity in a panel of independently-derived ER-α positive cell lines. These lines were chosen to represent the diverse genetic backgrounds and mutations commonly present in ER-α positive tumors. Using shRNA-mediated knockdown and overexpression studies we also elucidate the role of hypoxia-inducible factor 1-alpha (HIF-1α) in the hypoxia-induced decrease in ER-α abundance.

Results: We present the first comprehensive overview of the effects of bona fide low environmental oxygen (hypoxia) and HIF-1α activity on ER-α abundance and transcriptional activity. We find that stabilized HIF-1α induces rapid loss of ER-α protein in all members of our diverse panel of breast cancer cell lines, which involves proteolysis rather than transcriptional repression. Reduced ER-α severely attenuates ER-α directed transcription, and inhibits cell proliferation without overt signs of cell death in the cell lines tested, despite their varying genomic backgrounds.

Conclusions: These studies reveal a common hypoxia response that produces reduced ER-α expression and cell cycle stalling, and demonstrate a common role for HIF-1α in ER-α loss. We hypothesize that inhibitors of HIF-1α or the proteasome might stabilize ER-α expression in breast tumors in vivo, and work in combination with endocrine therapies to reduce resistance. Our data also suggests that disease re-occurrence in patients with ER-α positive tumors may arise from tumor cells chronically resident in hypoxic environments. We hypothesize that these non-proliferating cells may survive undetected until conditions change to oxygenate the environment, or cells eventually switch to proliferation via other signaling pathways.

Keywords: Aromatase inhibitor; Breast cancer; Drug resistance; Endocrine therapy; Endocrine therapy resistance; Estrogen receptor; HIF; HIF-1 alpha; HIF-1α; Hypoxia; Tamoxifen.

MeSH terms

  • Biomarkers, Tumor / metabolism
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Hypoxia
  • Cell Line, Tumor
  • Cell Proliferation
  • Estrogen Receptor alpha / genetics
  • Estrogen Receptor alpha / metabolism*
  • Female
  • Gene Expression
  • Gene Expression Regulation, Neoplastic*
  • Gene Silencing
  • Genome, Human
  • Humans
  • Neoplasm Recurrence, Local / metabolism

Substances

  • Biomarkers, Tumor
  • ESR1 protein, human
  • Estrogen Receptor alpha