Somatic human cells contain thousands of copies of mitochondrial DNA (mtDNA). In eukaryotes, natural transfer of mtDNA into the nucleus generates nuclear mitochondrial DNA (NUMT) copies. We name this phenomenon as "numtogenesis". Numtogenesis is a well-established evolutionary process reported in various sequenced eukaryotic genomes. We have established a molecular tool to rapidly detect and analyze NUMT insertions in whole genomes. To date, NUMT analyses depend on deep genome sequencing combined with comprehensive computational analyses of the whole genome. This is time consuming, cumbersome and cost prohibitive. Further, most laboratories cannot accomplish such analyses due to limited skills. We report the development of single-molecule mtFIBER FISH (fluorescence in situ hybridization) to study numtogenesis. The development of mtFIBER FISH should aid in establishing a role for numtogenesis in cancers and other human diseases. This novel technique should help distinguish and monitor cancer stages and progression, aid in elucidation of basic mechanisms underlying tumorigenesis and facilitate analyses of processes related to early detection of cancer, screening and/or cancer risk assessment.
Copyright © 2017 Elsevier Inc. All rights reserved.