Context: The joint effects of cardiorespiratory fitness (CRF) and body composition on metabolic health are not well known.
Objective: To examine the associations of CRF, fat-free mass index (FFMI), and fat mass index (FMI) with metabolic health in individual twins and controlling for genetic and shared environmental effects by studying monozygotic intrapair differences.
Design, setting, and participants: Two cross-sectional samples of healthy adult monozygotic and dizygotic twins were drawn from population-based Danish and Finnish national twin registries (n = 996 and n = 309).
Main measures: CRF was defined as VO2max divided by fat-free mass. Insulin sensitivity and acute insulin response indices were derived from an oral glucose tolerance test. A continuous metabolic syndrome score was calculated. Visceral and liver fat were measured in the Finnish sample. Associations were analyzed separately in both cohorts with multivariate linear regression and aggregated with meta-analytic methods.
Results: Insulin sensitivity, acute insulin response, metabolic syndrome score, visceral, and liver fat amount had strong and statistically significant associations with FMI (|β| 0.53 to 0.79), whereas their associations with CRF and FFMI were at most weak (|β| 0.02 to 0.15). The results of the monozygotic intrapair differences analysis showed the same pattern.
Conclusions: Although FMI is strongly associated with worsening of metabolic health traits, even after controlling for genetic and shared environmental factors, there was little evidence for the effects of CRF or FFMI on metabolic health. This suggests that changing FMI rather than CRF or FFMI may affect metabolic health irrespective of genetic or early environmental determinants.
Copyright © 2017 by the Endocrine Society