Background: The aim of this study was to determine the capability of real time three-dimensional echocardiography (RT3DE) and two-dimensional (2D) multilayer speckle tracking echocardiography (MSTE) for evaluation of early myocardial dysfunction triggered by increased left ventricular (LV) wall thickness in severe aortic stenosis (AS) with normal LV ejection fraction (EF≥55%).
Methods: Conventional, RT3D STE and 2D MSTE were performed in 45 patients (mean 68.9±9.0 years) with severe AS (aortic valve area <1 cm2 , aortic velocity Vmax >4 m/s or mean PG >40 mm Hg) and normal left ventricular ejection fraction (LVEF) without overt coronary artery disease and in 18 age-, sex-matched healthy controls. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were calculated using RT3DE and MSTE.
Results: The severe AS group had lower 3D GLS, GRS, GAS and 2D epicardium, and mid-wall and endocardium GLS compared to healthy controls. In MSTE analysis, 2D LS and CS values decreased from the endocardial layer toward the epicardial layer. Severe AS patients with increased LV wall thickness had lower 3D GLS and 2D epicardium, and mid-wall and endocardium GLS compared with severe AS patients without LV wall thickening. GLS on RT3D STE was correlated with GLS on 2D MSTE, left ventricular mass index, LVEF, left atrial volume index, and lnNT-proBNP.
Conclusion: RT3DE and 2D MSTE can be used to identify subtle contractile dysfunction triggered by increased LV wall thickness in severe AS with normal LVEF. Therefore, RT3D STE and 2D MSTE may provide additional information that can facilitate decision-making regarding severe AS patients with increased LV wall thickness and normal LV function.
Keywords: hypertrophy; myocardium; real time three-dimensional echocardiography; severe aortic stenosis; two-dimensional multilayer speckle tracking echocardiography.
© 2017, Wiley Periodicals, Inc.