Over the past 25 years, research in cancer therapeutics has largely focused on two distinct lines of enquiry. In one approach, efforts to understand the underlying cell-autonomous, genetic drivers of tumorigenesis have led to the development of clinically important targeted agents that result in profound, but often not durable, tumour responses in genetically defined patient populations. In the second parallel approach, exploration of the mechanisms of protective tumour immunity has provided several therapeutic strategies - most notably the 'immune checkpoint' antibodies that reverse the negative regulators of T cell function - that accomplish durable clinical responses in subsets of patients with various tumour types. The integration of these potentially complementary research fields provides new opportunities to improve cancer treatments. Targeted and immune-based therapies have already transformed the standard-of-care for several malignancies. However, additional insights into the effects of targeted therapies, along with conventional chemotherapy and radiation therapy, on the induction of antitumour immunity will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in patients.