The absorption of a photon usually creates a singlet exciton (S1) in molecular systems, but in some cases S1 may split into two triplets (2×T1) in a process called singlet fission. Singlet fission is believed to proceed through the correlated triplet-pair 1(TT) state. Here, we probe the 1(TT) state in crystalline hexacene using time-resolved photoemission and transient absorption spectroscopies. We find a distinctive 1(TT) state, which decays to 2×T1 with a time constant of 270 fs. However, the decay of S1 and the formation of 1(TT) occur on different timescales of 180 fs and <50 fs, respectively. Theoretical analysis suggests that, in addition to an incoherent S1→1(TT) rate process responsible for the 180 fs timescale, S1 may couple coherently to a vibronically excited 1(TT) on ultrafast timescales (<50 fs). The coexistence of coherent and incoherent singlet fission may also reconcile different experimental observations in other acenes.