Decades of genetic selection have generated 2 different, highly specialized types of chickens in which 1 type, known as the layer-type chicken, expresses high laying performance while the other type, known as the broiler-type chicken, is dedicated to the production of fast-growing birds. Selected lines for the latter type often express disorders in their reproductive performance including early sexual maturation and accelerated, non-reversible seasonal decline of their semen production and mating behavior. The aim of the present study was to characterize some metabolic markers of the Sertoli cell populations. Sertoli cells are somatic cells known to support, coordinate, nourish, and protect the germ cell populations from onset to the end of their meiotic process. Comparisons of gonadal development between males of the 2 genetic types taken at their pre-pubertal period indicated that the testes of layer-type chickens are significantly less developed than in broiler-type males taken at the same age. In addition, cultures of purified Sertoli cells from the 2 types revealed in vitro a higher proliferative capacity when issued from layer compared to broiler-type chickens. This was associated with a higher expression of the genes involved in the beta-oxidation of fatty acids (CPT1; PPARβ) as well as a 4-fold increase in the Lactate Dehydrogenase-A expression and activity. In contrast, Sertoli cells from broiler-type chickens presented an elevated activity of citrate synthase and mitochondria, suggesting a better efficacy of aerobic metabolism in Sertoli cells from broiler compared to layer-type chickens. Moreover, the testis from broiler-type chickens seems to be more sensitive to oxidative stress due to the lower global antioxidant capacity compared to layer-type chickens.In conclusion, these results suggest that the metabolic activity of testicular tissues is different in the layer and broiler breeder chickens. The aerobic metabolism more prevalent in broiler-type chickens could be a factor to reduce the male fertility such as germ cell quality.
Keywords: Sertoli cell; chicken; metabolism; testis.
© 2017 Poultry Science Association Inc.