A Self-Assembled Ratiometric Polymeric Nanoprobe for Highly Selective Fluorescence Detection of Hydrogen Peroxide

Langmuir. 2017 Apr 4;33(13):3287-3295. doi: 10.1021/acs.langmuir.7b00189. Epub 2017 Mar 27.

Abstract

In this study, a dual-emission fluorescence resonance energy transfer (FRET) polymeric nanoprobe by single-wavelength excitation was developed for sensitive and selective hydrogen peroxide (H2O2) detection. Polymeric nanoprobe was prepared by simple self-assembly of functional lipopolymers, which were 4-carboxy-3-fluorophenylboronic acid (FPBA)-modified DSPE-PEG (DSPE-PEG-FPBA) and 7-hydroxycoumarin (HC)-conjugated DSPE-PEG (DSPE-PEG-HC). Subsequent binding of alizarin red S (ARS) to FPBA endowed the nanoprobe with a new fluorescence emission peak at around 600 nm. Because of the perfect match of the fluorescence emission spectra of HC with the absorbance spectra of ARS-FPBA, FRET was achieved between them. The sensing strategy for H2O2 was based on H2O2-induced deboronation reaction and boronic acid-mediated ARS fluorescence. Interaction between phenylboronic acid and ARS was revisited herein and it was found that electron-donating or -withdrawing group on phenylboronic acid (PBA) has significant influence on the fluorescence property of ARS, which enabled sensitive and selective H2O2 sensing. The nanoprobe displayed two well-separated emission bands (150 nm), providing high specificity and sensitivity for ratiometric detection of H2O2. Further application was exploited for the determination of glucose and the results demonstrated that the proposed strategy showed ratiometric response capability for glucose detection. The current method does not involve complicated organic synthesis and opens a new avenue for the construction of multifunctional polymeric fluorescent nanoprobe.

Publication types

  • Research Support, Non-U.S. Gov't