A number of cardiovascular and neurological diseases are characterized by a dysregulation of intravascular volume distribution. The veins and arteries of the visceral organs form the so-called splanchnic vascular compartment and are the largest reservoir for intravascular blood. The blood localized in the splanchnic compartment can be mobilized in and out of the compartment via passive compression or active neurohormonal recruitment. We studied the hemodynamic effects of splanchnic nerve stimulation during five cases of irreversible electroporation (IRE) in patients with pancreatic cancer. In IRE, repeated bursts of high-voltage electrical fields are applied to visceral beds for >1 min, which induces rapid increase in blood pressure, heart rate, and cardiac output. We present the first analysis into the hemodynamic changes with splanchnic nerve stimulation and explore potential mechanisms of the hyperdynamic state. Our analysis presents the first human report of splanchnic nerve stimulation to induce hypertension and volume redistribution, introducing the splanchnic nerves as a key component of cardiovascular regulation.NEW & NOTEWORTHY Our case series provides the first detailed description of human hemodynamic effects with splanchnic nerve stimulation. Splanchnic nerve stimulation results in profound hemodynamic alteration with rapid onset of hypertension and blood mobilization.
Keywords: cardiac output; central venous pressure; irreversible electroporation; stroke volume.
Copyright © 2017 the American Physiological Society.