Adaptive Optics (AO) for scanning laser ophthalmoscopy enables high-resolution retinal imaging that can be used for preclinical research of diseases causing vision loss. Pupil Segmentation (PS) is an approach to wavefront-sensorless AO that acquires images within subregions across the imaging pupil to measure the wavefront slopes at the corresponding locations of the beam. We present PS-AO as an approach to correct ocular aberrations in ∼7 s, implemented to minimize respiratory motion from an anesthetized mouse. We demonstrated an improvement in resolution and an image intensity increase of ∼25% across all results using PS-AO for in vivo fluorescence retinal imaging in mice using a MEMS-based segmented deformable mirror.