Structure and Dynamics of the Liver Receptor Homolog 1-PGC1 α Complex

Mol Pharmacol. 2017 Jul;92(1):1-11. doi: 10.1124/mol.117.108514. Epub 2017 Mar 31.

Abstract

Peroxisome proliferator-activated gamma coactivator 1-α (PGC1α) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1α is known to bind and activate LRH-1, mechanisms through which PGC1α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1-PGC1α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), in coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1-PGC1α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1α but promoted allosteric signaling from the helix 6/β-sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1-PGC1α interaction and may illuminate strategies for selective therapeutic targeting of PGC1α-dependent LRH-1 signaling pathways.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites / physiology
  • Crystallization
  • Humans
  • Molecular Dynamics Simulation
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / chemistry*
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism*
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Receptors, Cytoplasmic and Nuclear / chemistry*
  • Receptors, Cytoplasmic and Nuclear / genetics
  • Receptors, Cytoplasmic and Nuclear / metabolism*

Substances

  • NR5A2 protein, human
  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Receptors, Cytoplasmic and Nuclear