Background: We explored the usefulness of myocardial strain analysis on cardiac magnetic resonance imaging (CMR) scans for the identification of cardiac amyloidosis.
Methods and results: The 61 patients with systemic amyloidosis underwent 3.0-T CMR, including CMR tagging and late-gadolinium enhanced (LGE) imaging. The circumferential strain (CS) of LGE-positive and LGE-negative patients was measured on midventricular short-axis images and compared. Logistic regression modeling of CMR parameters was performed to detect patients with LGE-positive cardiac amyloidosis. Of the 61 patients with systemic amyloidosis 48 were LGE-positive and 13 were LGE-negative. The peak CS was significantly lower in the LGE-positive than in the LGE-negative patients (-9.5±2.3 vs. -13.3±1.4%, P<0.01). The variability in the peak CS time was significantly greater in the LGE-positive than in the LGE-negative patients (46.1±24.5 vs. 21.2±20.1 ms, P<0.01). The peak CS significantly correlated with clinical biomarkers. The sensitivity, specificity, and accuracy of the diagnostic model using CS parameters for the identification of LGE-positive amyloidosis were 93.8%, 76.9%, and 90.2%, respectively.
Conclusions: Myocardial strain analysis by CMR helped detect LGE-positive amyloidosis without the need for contrast medium. The peak CS and variability in the peak CS time may correlate with the severity of cardiac amyloid deposition and may be more sensitive than LGE imaging for the detection of early cardiac disease in patients with amyloidosis.
Keywords: Cardiac amyloidosis; Cardiac magnetic resonance imaging; Late-gadolinium enhancement; Myocardial strain.