Domain Evolution and Piezoelectric Response across Thermotropic Phase Boundary in (K,Na)NbO3-Based Epitaxial Thin Films

ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13315-13322. doi: 10.1021/acsami.7b02263. Epub 2017 Apr 10.

Abstract

Recent research progress in (K,Na)NbO3 (KNN)-based lead-free piezoelectric ceramics has attracted increasing attention for their applications to microsystems or microelectromechanical systems (MEMS) in the form of thin films. This work demonstrates that high-quality KNN-based epitaxial films can be synthesized by a conventional sol-gel method, whose phase structure and domain characteristics have been investigated with emphasis on the temperature effect. A monoclinic MC structure is observed at room temperature in KNN-based epitaxial films, which is close to but different from the orthorhombic phase in bulk counterparts. Piezoresponse force microscopy (PFM) at elevated temperatures reveals continuous changes of ferroelectric domains in KNN films during heating and cooling cycles between room temperature and 190 °C. A distinct change in domain morphology is observed upon heating to 110 °C, accompanied by a clear variation of dielectric permittivity suggesting a thermotropic phase transition, which is revealed to belong to a MC-MA phase transition on the basis of structural and PFM analysis on local ferroelectric and piezoelectric behaviors. Enhanced piezoelectric response at the thermotropic phase boundary is observed, which is attributed to active domains and/or nanodomains formed across the boundary. Domain engineering by utilizing the phase transition should be important and effective in KNN-based films not only for property enhancement but also for its textured ceramics.

Keywords: domain evolution; lead-free; phase transition; piezoelectric; thermotropic phase boundary.