We demonstrate the controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities. The optomechanical coupling between the optical and mechanical degrees-of-freedom is dependent on the intracavity energy via the coupled fiber position. With the deterministic optomechanical stiffening, the interaction between optomechanical oscillation and self-pulsation can be controlled. Intracavity locking with 1/6 subharmonics is obtained over a wide optical detuning range of 190.01-192.23 THz. These results bring new insights into implementations of nonlinear dynamics at mesoscopic scale, with potential applications from photonic signal processing to nonlinear dynamic networks.