Parylene scaffold for cartilage lesion

Biomed Microdevices. 2017 Jun;19(2):26. doi: 10.1007/s10544-017-0170-7.

Abstract

Evaluate parylene scaffold feasibility in cartilage lesion treatment, introducing a novel paradigm combining a reparative and superficial reconstructive procedure. Fifteen rabbits were used. All animals had both knees operated and the same osteochondral lesion model was created bilaterally. The parylene scaffold was implanted in the right knee, and the left knee of the same animal was used as control. The animals were euthanized at different time points after surgery: four animals at three weeks, three animals at six weeks, four animals at nine weeks, and four animals at 12 weeks. Specimens were analyzed by International Cartilage Repair Society (ICRS) macroscopic evaluation, modified Pineda histologic evaluation of cartilage repair, and collagen II immunostaining. Parylene knees were compared to its matched contra-lateral control knees of the same animal using the Wilcoxon matched-pairs signed rank. ICRS mean ± SD values for parylene versus control, three, six, nine and twelve weeks, respectively: 7.83 ± 1.85 versus 4.42 ± 1.08, p = 0.0005; 10.17 ± 1.17 versus 6.83 ± 1.17, p = 0.03; 10.89 ± 0.60 versus 7.33 ± 2.18, p = 0.007; 10.67 ± 0.78 versus 7.83 ± 3.40, p = 0.03. Modified Pineda mean ± SD values for parylene versus control, six, nine and twelve weeks, respectively: 3.37 ± 0.87 versus 6.94 ± 1.7, p < 0.0001; 5.73 ± 2.05 versus 6.41 ± 1.7, p = 0.007; 3.06 ± 1.61 versus 6.52 ± 1.51, p < 0.0001. No inflammation was seen. Parylene implanted knees demonstrated higher collagen II expression via immunostaining in comparison to the control knees. Parylene scaffolds are a feasible option for cartilage lesion treatment and the combination of a reparative to a superficial reconstructive procedure using parylene scaffolds led to better results than the reparative procedure alone.

Keywords: Biomaterial; Cartilage; Cartilage treatment; Parylene; Scaffold; Tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage Diseases / diagnostic imaging
  • Cartilage Diseases / pathology*
  • Cartilage Diseases / therapy*
  • Feasibility Studies
  • Femur / diagnostic imaging
  • Femur / drug effects
  • Femur / pathology
  • Male
  • Polymers / pharmacology*
  • Rabbits
  • Tissue Scaffolds*
  • Xylenes / pharmacology*

Substances

  • Polymers
  • Xylenes
  • parylene