In this article, synthetic studies around a pyridylacrylamide-based hit compound (1), utilizing structure-based drug design guided by CDK8 docking models, is discussed. Modification of the pendant 4-fluorophenyl group to various heteroaromatic rings was conducted aiming an interaction with the proximal amino acids, and then replacement of the morpholine ring was targeted for decreasing potential of time-dependent CYP3A4 inhibition. These efforts led to the compound 4k, with enhanced CDK8 inhibitory activity and no apparent potential for time-dependent CYP3A4 inhibition (CDK8 IC50: 2.5nM; CYP3A4 TDI: 99% compound remaining). Compound 4k was found to possess a highly selective kinase inhibition profile, and also showed favorable pharmacokinetic profile. Oral administration of 4k (15mg/kg, bid. for 2weeks) suppressed tumor growth (T/C 29%) in an RPMI8226 mouse xenograft model.
Keywords: CDK19; CDK8; Cyclin-dependent kinases (CDKs); DMG; MCM3; Pyridylacrylamide; RPMI8226; STAT1; SW480; Transcriptional regulation.
Copyright © 2017 Elsevier Ltd. All rights reserved.