Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

Int J Nanomedicine. 2017 Mar 31:12:2517-2530. doi: 10.2147/IJN.S127799. eCollection 2017.

Abstract

Background: The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases.

Methods: Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs.

Results: In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells.

Conclusion: We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

Keywords: antibacterial activity; long-term effect; nanoparticle toxicity; phase transfer; silver nanoparticles.

MeSH terms

  • 3T3-L1 Cells / drug effects
  • Animals
  • Anti-Bacterial Agents / adverse effects
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Citric Acid / chemistry
  • Colloids / chemistry
  • Drug Evaluation, Preclinical / methods
  • Dynamic Light Scattering
  • Gram-Negative Bacteria / drug effects
  • Gram-Positive Bacteria / drug effects
  • Metal Nanoparticles / adverse effects
  • Metal Nanoparticles / chemistry*
  • Mice
  • Microbial Sensitivity Tests
  • Microscopy, Electron, Transmission
  • Silver / chemistry
  • Silver / pharmacology*
  • Spectrophotometry, Ultraviolet
  • Spectroscopy, Fourier Transform Infrared
  • Tannins / chemistry

Substances

  • Anti-Bacterial Agents
  • Colloids
  • Tannins
  • Citric Acid
  • Silver