A Glutamate-Substituted Mutant Mimics the Phosphorylated and Active Form of Guanylyl Cyclase-A

Mol Pharmacol. 2017 Jul;92(1):67-74. doi: 10.1124/mol.116.107995. Epub 2017 Apr 17.

Abstract

Multisite phosphorylation is required for activation of guanylyl cyclase (GC)-A, also known as NPR-A or NPR1, by cardiac natriuretic peptides (NPs). Seven chemically identified sites (Ser-487, Ser-497, Thr-500, Ser-502, Ser-506, Ser-510, and Thr-513) and one functionally identified putative site (Ser-473) were reported. Single alanine substitutions for Ser-497, Thr-500, Ser-502, Ser-506, and Ser-510 reduced maximal velocity (Vmax), whereas glutamate substitutions had no effect or increased Vmax Ala but not Glu substitution for Ser-497 increased the Michaelis constant (Km) approximately 400%. A GC-A mutant containing Glu substitutions for all seven chemically identified sites (GC-A-7E) had a Km approximately 10-fold higher than phosphorylated wild-type (WT) GC-A, but one additional substitution for Ser-473 to make GC-A-8E resulted in the same Vmax, Km, and EC50 as the phosphorylated WT enzyme. Adding more glutamates to make GC-A-9E or GC-A-10E had little effect on activity, and sequential deletion of individual glutamates in GC-A-8E progressively increased the Km Double Ala substitutions for Ser-497 and either Thr-500, Ser-510 or Thr-513 in WT-GC-A increased the Km 23- to 70-fold but the same mutations in GC-A-8E only increased the Km 8-fold, consistent with one site affecting the phosphorylation of other sites. Phosphate measurements confirmed that single-site Ala substitutions reduced receptor phosphate levels more than expected for the loss of a single site. We conclude that a concentrated region of negative charge, not steric properties, resulting from multiple interdependent phosphorylation sites is required for a GC-A conformation capable of transmitting the hormone binding signal to the catalytic domain.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Dose-Response Relationship, Drug
  • Enzyme Activation / drug effects
  • Enzyme Activation / physiology
  • Glutamic Acid / genetics*
  • Glutamic Acid / metabolism*
  • Glutamic Acid / pharmacology
  • Guanylate Cyclase / genetics*
  • Guanylate Cyclase / metabolism*
  • HEK293 Cells
  • Humans
  • Mutation / physiology*
  • Phosphorylation / drug effects
  • Phosphorylation / physiology

Substances

  • Glutamic Acid
  • Guanylate Cyclase