On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism

ACS Nano. 2017 May 23;11(5):5070-5079. doi: 10.1021/acsnano.7b01870. Epub 2017 Apr 24.

Abstract

Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP)6 formation is the stepwise desilverization of an organometallic (MTP-Ag)6 macrocycle, which forms via cyclization of (MTP-Ag)6 chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.

Keywords: Ullmann reaction; X-ray photoemission spectroscopy; macrocycle; on-surface synthesis; organometallics; pseudo-high dilution; scanning tunneling microscopy.

Publication types

  • Research Support, Non-U.S. Gov't