Modern glioma surgery has evolved from the principal belief that safe, maximal tumor resection improves symptom management, quality of life, progression-free survival, and overall survival in both low-grade and high-grade glioma. However, in the absence of level I data, the overwhelming support for this idea is derived largely from retrospective series. As a result, the influence of increasing extent of resection and reducing tumor burden on the efficacy of postoperative chemotherapy and radiotherapy, and survival, remains inadequately defined. This situation is particularly true because gliomas represent a widely heterogeneous group of tumors with varying behaviors and prognoses rooted in their complex molecular profile. The neurosurgical community has made a large effort to define the clinical benefits of maximizing tumor resection, with particular attention paid to the ever-evolving understanding of glioma molecular heterogeneity. Important new technologies have been developed concurrently to mitigate neurologic risks related to the pursuit of maximizing extent of resection. These advances reflect the modern goal of glioma surgery to find the optimal balance between tumor removal and neurologic compromise. We review the current literature supporting safe, maximal resection for gliomas.
Keywords: 5-ALA; Awake craniotomy; Cortical stimulation mapping; Extent of resection; Fluorescence-guided resection; Glioblastoma; High-grade glioma; Intraoperative MRI; Low-grade glioma; Residual volume; Sodium fluorescein.
Copyright © 2017 Elsevier Inc. All rights reserved.