The plant-specific TIFY proteins are widely present in land plants and play the important roles in the regulation of plant stress-responses. In this study, we carried out a bioinformatics analysis of TIFY genes in Populus trichocarpa by determining the phylogenetic relationship, chromosomal location and gene structure and expression profiles analysis under stresses. The 24 TIFY genes were identified and classified into four subfamilies (ZML, JAZ, PPD and TIFY). The 24 TIFY genes were irregularly located on 13 of the 19 chromosomes; ten gene pairs were involved in large-scale interchromosomal segmental duplication events; we identified 17 collinear TIFY gene pairs in the Populus trichocarpa genome. Numerous abiotic stress cis-elements were widely found in the promoter regions. Analysis of the Ka/Ks ratios indicated that the paralogs of the PtTIFY family principally underwent purifying selection. Microarray data and qRT-PCR analysis revealed that 24 PtTIFY genes were differentially expressed in various tissues. Quantitative real-time RT-PCR analysis of TIFY genes expression in response to salt, JA hormones and low-temperature stress revealed their stress-responses profiles. The results of this study provided valuable information for further exploration of the TIFY gene family in Populus trichocarpa.
Keywords: Phylogenetic analysis; Populus trichocarpa; Stress-responses profiles; TIFY genes.
Copyright © 2017 Elsevier Masson SAS. All rights reserved.