Identification of NTRK3 Fusions in Childhood Melanocytic Neoplasms

J Mol Diagn. 2017 May;19(3):387-396. doi: 10.1016/j.jmoldx.2016.11.005.

Abstract

Spitzoid neoplasms are a distinct group of melanocytic tumors. Genetically, they lack mutations in common melanoma-associated oncogenes. Recent studies have shown that spitzoid tumors may contain a variety of kinase fusions, including ROS1, NTRK1, ALK, BRAF, and RET fusions. We report herein the discovery of recurrent NTRK3 gene rearrangements in childhood melanocytic neoplasms with spitzoid and/or atypical features, based on genome-wide copy number analysis by single-nucleotide polymorphism array, which showed intragenic copy number changes in NTRK3. Break-apart fluorescence in situ hybridization confirmed the presence of NTRK3 rearrangement, and a novel MYO5A-NTRK3 transcript, representing an in-frame fusion of MYO5A exon 32 to NTRK3 exon 12, was identified using a rapid amplification of cDNA ends-based anchored multiplex PCR assay followed by next-generation sequencing. The predicted MYO5A-NTRK3 fusion protein consists of several N-terminal coiled-coil protein dimerization motifs encoded by MYO5A and C-terminal tyrosine kinase domain encoded by NTRK3, which is consistent with the prototypical structure of TRK oncogenic fusions. Our study also demonstrates how array-based copy number analysis can be useful in discovering gene fusions associated with unbalanced genomic aberrations flanking the fusion points. Our findings add another potentially targetable kinase fusion to the list of oncogenic fusions in melanocytic tumors.

MeSH terms

  • Anaplastic Lymphoma Kinase
  • Discoidin Domain Receptor 2 / genetics
  • Gene Fusion / genetics*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Melanoma / genetics*
  • Mutation
  • Myosin Heavy Chains / genetics
  • Myosin Type V / genetics
  • Oncogene Fusion / genetics
  • Oncogene Proteins, Fusion / genetics
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins c-ret / genetics
  • Receptor Protein-Tyrosine Kinases / genetics
  • Receptor, trkC / genetics*
  • Sequence Analysis, DNA

Substances

  • Oncogene Proteins, Fusion
  • MYO5A protein, human
  • ALK protein, human
  • Anaplastic Lymphoma Kinase
  • DDR2 protein, human
  • Discoidin Domain Receptor 2
  • Proto-Oncogene Proteins c-ret
  • RET protein, human
  • Receptor Protein-Tyrosine Kinases
  • Receptor, trkC
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • Myosin Type V
  • Myosin Heavy Chains