Angiotensin-converting enzyme 2 (ACE2) is considered a potential therapeutic target of the renin-angiotensin system (RAS) for the treatment of cardiovascular diseases. We aimed to explore the effects of ACE2 overexpression on doxorubicin-induced cardiomyopathy in rats. Rats were randomly divided into treatment and control groups. The rats of treatment group were injected intraperitoneally with 6 doses of doxorubicin (2.5 mg/kg) within a period of two weeks. Two weeks after the initial injection of doxorubicin, these rats were randomly divided into Mock, Ad-EGFP, Ad-ACE2, and Cilazapril groups. The rats of Ad-EGFP and Ad-ACE2 groups received intramyocardial injection of Ad-EGFP and Ad-ACE2, respectively. The rats of Cilazapril group received cilazapril (10 mg/kg/day) via intragastric intubation. Apoptosis, inflammation, oxidative stress, cardiac function, the extent of myocardial fibrosis, and levels of ACE2, ACE, angiotensin II (AngII), and angiotensin (1-7) were evaluated. Four weeks after ACE2 gene transfer, the Ad-ACE2 group showed not only reduced apoptosis, inflammatory response, oxidative stress, left ventricular (LV) volume, extent of myocardial fibrosis and mortality of rats, but also increased LV ejection fraction and ACE2 expression level compared with the Mock and Ad-EGFP groups. ACE2 overexpression was superior to cilazapril in improving doxorubicin-induced cardiomyopathy. The putative mechanisms may involve activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, decrease of TGF-β1 expression, and interactions of shifting RAS components, such as decreased myocardium AngII levels, increased myocardium Ang (1-7) levels, and reduced ACE expression. Thus, ACE2 may be a novel therapeutic approach to prevent and treat doxorubicin-induced cardiomyopathy.
Keywords: angiotensin-converting enzyme 2; cilazapril; doxorubicin-induced cardiomyopathy; gene therapy.