Background: Small interfering RNAs (siRNAs) are powerful tools to control gene expression. However, due to their poor cellular permeability and stability, their therapeutic development requires a specific delivery system. Among them, cell-penetrating peptides (CPP) have been shown to transfer efficiently siRNA inside the cells. Recently we developed amphipathic peptides able to self-assemble with siRNAs as peptide-based nanoparticles and to transfect them into cells. However, despite the great potential of these drug delivery systems, most of them display a low resistance to proteases.
Results: Here, we report the development and characterization of a new CPP named RICK corresponding to the retro-inverso form of the CADY-K peptide. We show that RICK conserves the main biophysical features of its L-parental homologue and keeps the ability to associate with siRNA in stable peptide-based nanoparticles. Moreover the RICK:siRNA self-assembly prevents siRNA degradation and induces inhibition of gene expression.
Conclusions: This new approach consists in a promising strategy for future in vivo application, especially for targeted anticancer treatment (e.g. knock-down of cell cycle proteins). Graphical abstract RICK-based nanoparticles: RICK peptides and siRNA self-assemble in peptide-based nanoparticles to penetrate into the cells and to induce target protein knock-down.
Keywords: Cancer; Cell penetrating peptides; D-Amino acids; Enantiomer; Gene knock-down; Nanoparticle; Retro-inverso; siRNA delivery.