The influence of oxygen molecule on the luminescent properties of a cyclometalated Pt(II) complex Lxp1, was investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Analysis of frontier molecular orbitals and electronic configuration indicated that the highest-occupied molecular orbital of the Lxp1 has a significant mixture of metal Pt (d) as well as 2-phenylpyridine and acetyl acetone(π). The lowest-unoccupied orbital of the Lxp1 primarily locates on π* of 2-phenylpyridineligands. The emission mechanism of the cyclometalated Pt(II) complex Lxp1 is assigned to the mixing of ligand-to-metal charge transfer and ligand-to-ligand charge transfer. The emission mechanism of the Lxp1-O2 complex can be attributed to the charge transfer from the oxygen molecule to the luminescent material Lxp1. Our study showed that intermolecular hydrogen bonding between the Lxp1 and oxygen molecule was strengthened by the calculation of electronic excitation, leading to a luminescence-decreasing phenomenon. The calculation of the radiative and non-radiative decay rate constants of the Lxp1 and the Lxp1-O2 complex demonstrates that the phosphorescence from T1-S0 of the Lxp1 would alter to the internal conversion from T1-T0 of the Lxp1-O2 complex. This alteration further explains the luminescence quenching phenomenon of the cyclometalated Pt(II) complex Lxp1 after interacting with oxygen molecule.
Keywords: Charge transfer; Excited state; H-bond; Recognition mechanism; Sensor.
Copyright © 2017 Elsevier B.V. All rights reserved.