Noninvasive molecular analysis of Helicobacter pylori: Is it time for tailored first-line therapy?

World J Gastroenterol. 2017 Apr 14;23(14):2453-2458. doi: 10.3748/wjg.v23.i14.2453.

Abstract

The main problem of Helicobacter pylori (H. pylori) infection management is linked to antibiotic resistances. This phenomenon has grown in the last decade, inducing a dramatic decline in conventional regimen effectiveness. The causes of resistance are point mutations in bacterial DNA, which interfere with antibiotic mechanism of action, especially clarithromycin and levofloxacin. Therefore, international guidelines have recently discouraged their use in areas with a relevant resistance percentage, suggesting first-line schedules with expected high eradication rates, i.e., bismuth containing or non-bismuth quadruple therapies. These regimens require the daily assumption of a large number of tablets. Consequently, a complete adherence is expected only in subjects who may be motivated by the presence of major disorders. However, an incomplete adherence to antibiotic therapies may lead to resistance onset, since sub-inhibitory concentrations could stimulate the selection of resistant mutants. Of note, a recent meta-analysis suggests that susceptibility tests may be more useful for the choice of first than second-line or rescue treatment. Additionally, susceptibility guided therapy has been demonstrated to be highly effective and superior to empiric treatments by both meta-analyses and recent clinical studies. Conventional susceptibility test is represented by culture and antibiogram. However, the method is not available everywhere mainly for methodology-related factors and fails to detect hetero-resistances. Polymerase chain reaction (PCR)-based, culture-free techniques on gastric biopsy samples are accurate in finding even minimal traces of genotypic resistant strains and hetero-resistant status by the identification of specific point mutations. The need for an invasive endoscopic procedure has been the most important limit to their spread. A further step has, moreover, been the detection of point mutations in bacterial DNA fecal samples. Few studies on clarithromycin susceptibility have shown an overall high sensitivity and specificity when compared with culture or PCR on gastric biopsies. On these bases, two commercial tests are now available although they have shown some controversial findings. A novel PCR method showed a full concordance between tissue and stool results in a preliminary experience. In conclusion, despite poor validation, there is increasing evidence of a potential availability of noninvasive investigations able to detect H. pylori resistances to antibiotics. These kinds of analysis are currently at a very early phase of development and caution should be paid about their clinical application. Only further studies aimed to evaluate their sensitivity and specificity will afford novel data for solid considerations. Nevertheless, noninvasive molecular tests may improve patient compliance, time/cost of infection management and therapeutic outcome. Moreover, the potential risk of a future increase of resistance to quadruple regimens as a consequence of their use on large scale and incomplete patient adherence could be avoided.

Keywords: Antibiotic resistance; Helicobacter pylori; Noninvasive molecular test; Stool; Tailored therapy.

Publication types

  • Editorial
  • Review

MeSH terms

  • Anti-Bacterial Agents / therapeutic use*
  • Bacteriological Techniques*
  • DNA, Bacterial / genetics
  • Drug Resistance, Bacterial
  • Feces / microbiology
  • Genotype
  • Helicobacter Infections / diagnosis
  • Helicobacter Infections / drug therapy*
  • Helicobacter Infections / microbiology
  • Helicobacter pylori / drug effects*
  • Helicobacter pylori / genetics
  • Humans
  • Microbial Sensitivity Tests
  • Molecular Diagnostic Techniques*
  • Mutation
  • Precision Medicine*
  • Predictive Value of Tests

Substances

  • Anti-Bacterial Agents
  • DNA, Bacterial