Non-enzymatic oligomerization of activated ribonucleotides leads to ribonucleic acids that contain a mixture of 2',5'- and 3',5'-linkages, and overcoming this backbone heterogeneity has long been considered a major limitation to the prebiotic emergence of RNA. Herein, we demonstrate non-enzymatic chemistry that progressively converts 2',5'-linkages into 3',5'-linkages through iterative degradation and repair. The energetic costs of this proofreading are met by the hydrolytic turnover of a phosphate activating agent and an acylating agent. With multiple rounds of this energy-dissipative recycling, we show that all-3',5'-linked duplex RNA can emerge from a backbone heterogeneous mixture, thereby delineating a route that could have driven RNA evolution on the early earth.
Keywords: RNA; energy-dissipative processes; molecular evolution; nucleic acids; origin of life.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.