Toddlers performed a spatial mapping task in which they were required to learn the location of a hidden object in a vertical array and then transpose this location information 90° to a horizontal array. During the vertical training, they were given (a) no labels, (b) alphabetical labels, or (c) numerical labels for each potential spatial location. After the array was transposed to become a horizontal continuum, the children who were provided with numerical labels during training and those who heard alphabetical labels and formed a strong memory for the vertical location, selectively chose the location corresponding to a left-to-right mapping bias. Children who received no concurrent ordinal labels during training were not able to transpose the array, and did not exhibit any spatial directionality bias after transposition. These results indicate that children exhibit more flexible spatial mapping than other animals, and this mapping is modulated depending on the type of concurrent ordinal information the child receives. (PsycINFO Database Record
(c) 2017 APA, all rights reserved).