Tumor chemotherapy is an important mean in the clinical treatment of metastatic cancer,but low selectivity and drug resistance restrict its clinical application. BP100 is a multifunctional membrane-active peptide with high antimicrobial activity. We selected BP100 as a lead peptide, designed and synthesized a series of BP100 analogs through solid-phase synthesis. Amongst them, peptides with the Tyr10 residue substituted by leucine and histidine showed the highest anti-cancer activity. Further experiments revealed that BP100 and its analogs could disrupt the cell membrane and trigger the cytochrome C release into cytoplasm, which ultimately resulted in apoptosis. Meanwhile, BP100 and its analogs also exhibited effective anti-tumor activity against multidrug-resistant cells, showing multidrug resistance-reversing effects. In conclusion, these peptides might be promising candidates for cancer therapy.
Keywords: Anti-cancer; Antimicrobial peptides; Membrane-disruption; Multidrug resistance-reversing effects.