The proteasomal 19S regulatory particle (RP) associated deubiquitinases (DUBs) have attracted much attention owing to their potential as a therapeutic target for cancer therapy. Identification of new entities against 19S RP associated DUBs and illustration of the underlying mechanisms is crucial for discovery of novel proteasome blockers. In this study, a series of 4-arylidene curcumin analogues were identified as potent proteasome inhibitor by preferentially blocking deubiquitinase function of proteasomal 19S RP with moderate 20S CP inhibition. The most active compound 33 exhibited a major inhibitory effect on 19S RP-associated ubiquitin-specific proteases 14, along with a minor effect on ubiquitin C-terminal hydrolase 5, which resulted in dysfunction of proteasome, and subsequently accumulated ubiquitinated proteins (such as IκB) in several cancer cells. Remarkably, though both 19S RP and 20S CP inhibition induced significantly endoplasmic reticulum stress and triggered caspase-12/9 pathway activation to promote cancer cell apoptosis, the 19S RP inhibition by 33 avoided slow onset time, Bcl-2 overexpression, and PERK-phosphorylation, which contribute to the deficiencies of clinical drug Bortezomib. These systematic studies provided insights in the development of novel proteasome inhibitors for cancer treatment.
Keywords: (1E,6E)-4-(3-Bromo-4-hydroxy-5-methoxybenzylidene)-1,7-bis(345-trimethoxyphenyl)hepta-1,6-diene-3,5-dione (33: PubChem CID:123132175); (1E,6E)-4-(4-Hydroxy-3,5-dimethoxybenzylidene)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,6-diene-3,5-dione (34: PubChemCID:123132176); 19S regulatory particle; 3,4,5-Trimethoxybenzaldehyde (PubChem CID:6858); Acetylacetone (PubChem CID: 31261); Anticancer; Bortezomib (PubChem CID: 387447); Curcumin (PubChem CID: 969516); Curcumin analogues; Deubiquitinase; Proteasome; n-Butylamine (PubChem CID: 8007).
Copyright © 2017 Elsevier Inc. All rights reserved.