Objectives: This study sought to explore the potential role of non-contrast T1 mapping for the detection and quantification of cardiac involvement in familial amyloid polyneuropathy (FAP).
Methods: Japanese patients with FAP [n = 41, age 53.2 ± 13.9 years, genotype Val30Met (n = 25), non-Val30Met (n = 16)] underwent cardiac magnetic resonance imaging that included T1 mapping (saturation-recovery method) and late gadolinium-enhanced (LGE) imaging on a 3.0-T MR scanner. Their native T1 was measured on mid-ventricular short-axis images and compared with 30 controls.
Results: Of the 41 FAP patients 29 were LGE positive. The native T1 was significantly higher in FAP patients than in the controls (1,634.1 ± 126.3 ms vs. 1,432.4 ± 69.0 ms, p < 0.01), significantly higher in LGE-positive- than LGE-negative FAP patients (1,687.1 ± 104.4 ms vs. 1,505.4 ± 68.5 ms, p < 0.01), and significantly higher in LGE-negative FAP patients than the controls (p < 0.01). A native T1 cutoff value of 1,610 ms yielded 85.4% accuracy for identifying LGE-positive FAP. The native T1 significantly correlated with the interventricular septum wall thickness, the left ventricular mass, the LGE volume, the plasma B-type natriuretic peptide level, and the E/e' ratio (all p < 0.01).
Conclusion: T1 mapping is of high diagnostic accuracy for the detection of LGE-positive FAP. The native myocardial T1 may be correlated with the severity of cardiac amyloid deposition.
Key points: • The native T1 was higher in FAP patients than the controls. • The native T1 was higher in LGE-positive- than LGE-negative FAP patients. • The native T1 was higher in LGE-negative FAP patients than the controls. • The native T1 correlated with clinical markers of systolic and diastolic dysfunction. • Myocardial T1 mapping is of high diagnostic accuracy for detecting LGE-positive FAP.
Keywords: Cardiac amyloidosis; Cardiac magnetic resonance imaging; Familial amyloid polyneuropathy; Late gadolinium enhancement; Myocardial T1 mapping.