To enhance the therapeutic effects of meloxicam (MLX), we developed an oral MLX-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles@hydrogel (MLX-NPs@hydrogel) preparation. The MLX-NPs were fabricated via a solvent evaporation method, and their morphologies were observed by a JEM-1011 transmission electron microscope (TEM). The poly(mPEGMA-co-MAA) hydrogels were synthesized, and studies on their pH sensibilities were carried out in pH1.2, 6.8, and 7.4 buffers. The final MLX-NPs@hydrogel preparation was obtained by immersing the hydrogels in the MLX-NPs suspensions (pH7.4) for 48h. The thermodynamic properties and cytotoxicity of the MLX-NPs@hydrogel preparation were also studied. TEM images illustrated that mPEG-b-PCL NPs had a uniform size distribution. The poly(mPEGMA-co-MAA) hydrogels showed an excellent pH-sensibility. Thermal gravity analysis (TGA) data suggested that the protection of hydrogels improved the stability of mPEG-b-PCL NPs. The release studies revealed that MLX-NPs@hydrogel could deliver the MLX-NPs into alkalescent environment (e.g. intestinal tract). Then, the medicated NPs released MLX at a sustained release profile. Such preparation could overcome the drawbacks of oral MLX, and enhance its therapeutic effects. Therefore, the NPs@hydrogel was a promising sustained-controlled release matrix.
Keywords: Drug delivery; MLX; Poly(mPEGMA-co-MAA) hydrogels; mPEG-b-PCL NPs.
Copyright © 2017 Elsevier B.V. All rights reserved.