Background: We examined whether disparities existed in hospital-onset (HO) Staphylococcus aureus bloodstream infections (BSIs) and used whole-genome sequencing (WGS) to identify factors associated with USA300 transmission networks.
Methods: We evaluated HO methicillin-susceptible S. aureus (MSSA) and HO methicillin-resistant S. aureus (MRSA) BSIs for 2009-2013 at 2 hospitals and used an adjusted incidence for modeling. WGS and phylogenetic analyses were performed on a sample of USA300 BSI isolates. Epidemiologic data were analyzed in the context of phylogenetic reconstructions.
Results: On multivariate analysis, male sex, African-American race, and non-Hispanic white race/ethnicity were significantly associated with HO-MRSA BSIs whereas Hispanic ethnicity was negatively associated (rate ratio, 0.41; P = .002). Intermixing of community-onset and HO-USA300 strains on the phylogenetic tree indicates that these strains derive from a common pool. African-American race was the only factor associated with genomic clustering of isolates.
Conclusions: In a multicenter assessment of HO-S. aureus BSIs, African-American race was significantly associated with HO-MRSA but not MSSA BSIs. There appears to be a nexus of USA300 community and hospital transmission networks, with a community factor being the primary driver. Our data suggest that HO-USA300 BSIs likely are due to colonizing strains acquired in the community before hospitalization. Therefore, prevention efforts may need to extend to the community for maximal benefit.
Keywords: MRSA; Whole genome sequencing; bacteremia; disparities.
© The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected].