Adult hippocampal neurogenesis (AHN) occurs in humans and every other mammalian species examined. Evidence that AHN is stimulated by a variety of treatments and behaviors with anxiolytic properties has sparked interest in harnessing AHN to treat anxiety disorders. However, relatively little is known about the mechanisms through which AHN modulates fear and anxiety. In this review, we consider evidence that AHN modulates fear and anxiety by altering the processing of and memory for traumatic experiences. Based on studies of the role of AHN in Pavlovian fear conditioning, we conclude that AHN modulates the consequences of aversive experience by influencing 1) the efficiency of hippocampus-dependent memory acquisition; 2) generalization of hippocampal fear memories; 3) long-term retention of hippocampal aversive memories; and 4) the nonassociative effects of acute aversive experience. The preclinical literature suggests that stimulation of AHN is likely to have therapeutically relevant consequences, including reduced generalization and long-term retention of aversive memories. However, the literature also identifies four caveats that must be addressed if AHN-based therapies are to achieve therapeutic benefits without significant side effects.
Keywords: Adult neurogenesis; Anxiety; Behavior; Dentate gyrus; Depression; Fear; Hippocampus; Phobia; Rodent.