Background: Serum thyroglobulin (Tg) is associated with the presence of thyroid disease and has been proposed as a biomarker of iodine status. Few studies have examined factors related to serum Tg in populations environmentally exposed to ionizing radiation and living in regions with endemic mild-to-moderate iodine deficiency.
Methods: We screened 10,430 individuals who were living in Ukraine and under 18 years of age at the time of the 1986 Chernobyl Nuclear Power Plant accident for thyroid disease from 2001 to 2003. We estimated the percent change (PC) in serum Tg associated with demographic factors, iodine-131 thyroid dose, and indicators of thyroid structure and function using linear regression. We also examined these relationships for individuals with and without indications of thyroid abnormality.
Results: Mean and median serum Tg levels were higher among participants with abnormal thyroid structure/function. Percent change in serum Tg increased among females, smokers and with older age (p-values<0.001), and Tg increased with increasing thyroid volume, and serum thyrotropin (p-values for trend<0.001). We found no evidence of significant associations between iodine-131 thyroid dose and Tg. Serum Tg levels were inversely associated with iodized salt intake (PC=-7.90, 95% confidence interval: -12.08, -3.52), and over the range of urinary iodine concentration, the odds of having elevated serum Tg showed a U-shaped curve with elevated Tg at low and high urinary iodine concentrations.
Conclusion: Serum Tg may be a useful indicator of population iodine status and a non-specific biomarker of structural and functional thyroid abnormalities in epidemiological studies.
Keywords: Chernobyl; Iodine; Ionizing radiation; Thyroglobulin; Thyroid.
Copyright © 2017 Elsevier Inc. All rights reserved.