Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo

EMBO Rep. 2017 Jul;18(7):1150-1165. doi: 10.15252/embr.201643480. Epub 2017 May 15.

Abstract

Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc-KO photoreceptors, resulting in activity-dependent neurodegeneration. Lipid-containing Atg8/LC3-positive puncta accumulate in ifc-KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc-KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc-KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc-KO defects. Human dhCer desaturase rescues ifc-KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity-dependent degeneration caused by dhCer accumulation.

Keywords: dihydroceramide; lipophagy; neurodegeneration; photoreceptors; sphingolipid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Autophagy*
  • Cell Line, Tumor
  • Ceramides / analysis
  • Ceramides / metabolism*
  • Drosophila
  • Drosophila Proteins / deficiency
  • Drosophila Proteins / genetics
  • Fatty Acid Desaturases / genetics
  • Gene Knockout Techniques
  • Humans
  • Light / adverse effects
  • Lipid Metabolism*
  • Lipolysis
  • Membrane Proteins / deficiency
  • Membrane Proteins / genetics
  • Neurodegenerative Diseases / prevention & control
  • Photoreceptor Cells, Invertebrate / pathology
  • Photoreceptor Cells, Invertebrate / radiation effects
  • Sphingolipids / metabolism

Substances

  • Ceramides
  • Drosophila Proteins
  • Membrane Proteins
  • Sphingolipids
  • dihydroceramide
  • ifc protein, Drosophila
  • Fatty Acid Desaturases