The Hypothalamic-Pituitary-Adrenal (HPA)-axis plays an important role in the expression of defensive freezing. Adaptive freezing reactivity, characterized by an immediate increase in acute stress and timely termination upon threat offset or need to act, is essential for adequate stress coping. Blunted HPA-axis activity in animals is associated with blunted freezing reactivity and internalizing symptoms. Despite their potential relevance, it remains unknown whether these mechanisms apply to humans and human psychopathology. Using a well-established method combining electrocardiography and posturography, we assessed freezing before, immediately after, and one hour after a stress induction in 92 human adolescents. In line with animal models, human adolescents showed stress-induced freezing, as quantified by relative reductions in heart rate and body sway after, as compared to before, stress. Moreover, relatively lower basal cortisol was associated with reduced stress-induced freezing reactivity (i.e., less immediate freezing and less recovery). Path analyses showed that decreased freezing recovery in individuals with reduced cortisol levels was associated with increased levels of internalizing symptoms. These findings suggest that reduced freezing recovery may be a promising marker for the etiology of internalizing symptoms.
Keywords: Cortisol; Freezing; Internalizing symptoms; Stress.
Copyright © 2017 Elsevier Ltd. All rights reserved.