An Electrochemically Treated BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting

Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8500-8504. doi: 10.1002/anie.201703491. Epub 2017 Jun 8.

Abstract

BiVO4 films with (040) facet grown vertically on fluorine doped SnO2 (FTO) glass substrates are prepared by a seed-assisted hydrothermal method. A simple electrochemical treatment process drastically enhances the photocatalytic activity of BiVO4 , exhibiting a remarkable photocurrent density of 2.5 mA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE) under AM 1.5 G illumination, which is approximately 10-fold higher than that of the pristine photoanode. Loading cobalt borate (CoBi) as cocatalyst, the photocurrent density of the BiVO4 photoanode can be further improved to 3.2 mA cm-2 , delivering an applied bias photon-to-current efficiency (ABPE) of 1.1 %. Systematic studies reveal that crystal facet orientation also synergistically boosts both charge separation and transfer efficiencies, resulting in remarkably enhanced photocurrent densities. These findings provide a facile and effective approach for the development of efficient photoelectrodes for photoelectrochemical water splitting.

Keywords: bismuth vanadate; crystal facet engineering; electrochemical treatment; oxygen vacancies; water splitting.

Publication types

  • Research Support, Non-U.S. Gov't