Mutant cystathionine gamma-lyase was targeted to phosphatidylserine exposed on tumor vasculature through fusion with Annexin A1 or Annexin A5. Cystathionine gamma-lyase E58N, R118L, and E338N mutations impart nonnative methionine gamma-lyase activity, resulting in tumor-localized generation of highly toxic methylselenol upon systemic administration of nontoxic selenomethionine. The described therapeutic system circumvents systemic toxicity issues using a novel drug delivery/generation approach and avoids the administration of nonnative proteins and/or DNA required with other enzyme prodrug systems. The enzyme fusion exhibits strong and stable in vitro binding with dissociation constants in the nanomolar range for both human and mouse breast cancer cells and in a cell model of tumor vascular endothelium. Daily administration of the therapy suppressed growth of highly aggressive triple-negative murine 4T1 mammary tumors in immunocompetent BALB/cJ mice and MDA-MB-231 tumors in SCID mice. Treatment did not result in the occurrence of negative side effects or the elicitation of neutralizing antibodies. On the basis of the vasculature-targeted nature of the therapy, combinations with rapamycin and cyclophosphamide were evaluated. Rapamycin, an mTOR inhibitor, reduces the prosurvival signaling of cells in a hypoxic environment potentially exacerbated by a vasculature-targeted therapy. IHC revealed, unsurprisingly, a significant hypoxic response (increase in hypoxia-inducible factor 1 α subunit, HIF1A) in the enzyme prodrug-treated tumors and a dramatic reduction of HIF1A upon rapamycin treatment. Cyclophosphamide, an immunomodulator at low doses, was combined with the enzyme prodrug therapy and rapamycin; this combination synergistically reduced tumor volumes, inhibited metastatic progression, and enhanced survival. Mol Cancer Ther; 16(9); 1855-65. ©2017 AACR.
©2017 American Association for Cancer Research.