Alzheimer's disease is a devastating neurodegenerative disorder affecting a significant portion of the world's rapidly growing aging population. In spite of its prevalence, the etiology of the disease is still poorly understood, and effective therapy is all but unavailable. Over the past decade, noncoding RNA, including microRNA (miRNA), has emerged as a major class of regulatory molecules involved in virtually all physiological and disease states. The specificity provided by miRNA sequence complementarity, together with the ability of these molecules to regulate complex networks of genes, has made them exciting novel targets for therapeutic agents. In this chapter, we review recent progress on understanding the role of noncoding RNA in Alzheimer's disease (AD). The majority of available work has focused on miRNA, and we review the many studies implicating specific miRNAs in the development of the disease. More recently, several studies have tied other RNA classes to the disorder, including long noncoding RNA, circular RNA, and Y RNAs, and we review this fascinating field as well. Finally, we explore the potential promise of these findings for future therapeutic applications.
Keywords: Alzheimer’s disease; Amyloid beta; Lipids; Long noncoding RNA; MicroRNA; Tau.