Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue

Adv Healthc Mater. 2017 Aug;6(16):10.1002/adhm.201700015. doi: 10.1002/adhm.201700015. Epub 2017 May 19.

Abstract

Fabricating 3D large-scale bone tissue constructs with functional vasculature has been a particular challenge in engineering tissues suitable for repairing large bone defects. To address this challenge, an extrusion-based direct-writing bioprinting strategy is utilized to fabricate microstructured bone-like tissue constructs containing a perfusable vascular lumen. The bioprinted constructs are used as biomimetic in vitro matrices to co-culture human umbilical vein endothelial cells and bone marrow derived human mesenchymal stem cells in a naturally derived hydrogel. To form the perfusable blood vessel inside the bioprinted construct, a central cylinder with 5% gelatin methacryloyl (GelMA) hydrogel at low methacryloyl substitution (GelMALOW ) was printed. We also develop cell-laden cylinder elements made of GelMA hydrogel loaded with silicate nanoplatelets to induce osteogenesis, and synthesized hydrogel formulations with chemically conjugated vascular endothelial growth factor to promote vascular spreading. It was found that the engineered construct is able to support cell survival and proliferation during maturation in vitro. Additionally, the whole construct demonstrates high structural stability during the in vitro culture for 21 days. This method enables the local control of physical and chemical microniches and the establishment of gradients in the bioprinted constructs.

Keywords: 3D bioprinting; angiogenic hydrogels; bone-like tissue constructs; vascularized bone tissue.

MeSH terms

  • Bioprinting / methods*
  • Bone and Bones* / cytology
  • Bone and Bones* / physiology
  • Cell Line
  • Cell Survival / drug effects
  • Coculture Techniques
  • Human Umbilical Vein Endothelial Cells / cytology
  • Humans
  • Hydrogel, Polyethylene Glycol Dimethacrylate / chemistry
  • Hydrogel, Polyethylene Glycol Dimethacrylate / pharmacology
  • Mesenchymal Stem Cells / cytology
  • Neovascularization, Physiologic / drug effects
  • Osteogenesis / drug effects*
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*
  • Vascular Endothelial Growth Factor A / pharmacology

Substances

  • Vascular Endothelial Growth Factor A
  • Hydrogel, Polyethylene Glycol Dimethacrylate